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AbstractÐThe thermocapillary movement of bubbles has been investigated for large Reynolds numbers.
A numerical analysis of the ¯ow ®eld around a bubble has been carried out for arbitrary Marangoni
(Ma) numbers. For small Ma the ¯ow ®eld has been calculated using a matched asymptotic procedure.
A comparison is made of the nondimensional bubble velocity and the temperature gradient at the
bubble surface, calculated numerically, with analytical results for large and small values of Ma, and
with numerical results obtained previously. The expansion for large Ma has also been proposed by
Balasubramaniam and Subramanian (1996). For Maw1 the presence of both the thermal boundary
layer and the wake impose limitations in the numerical calculations. The calculations have been carried
out for values of Ma signi®cantly larger than those previously obtained. # 1998 Elsevier Science Ltd.
All rights reserved
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1 . INTRODUCTION

The migration of bubbles in a liquid environment, produced by thermocapillary forces in the
presence of temperature gradients, is a problem of interest in processing of materials in zero
gravity. Much work has been done on the subject that has been reviewed by Wozniak et al.
(1988) and Subramanian (1992). Much of the work has been dedicated to both low Reynolds,
Re, and Marangoni, Ma, numbers; among them, the pioneering work of Young et al. (1959) for
the vanishing convection should be mentioned. However, as pointed out by Subramanian
(1992), signi®cant convective e�ects may appear in many practical situations. Crespo and
Manuel (1983) and independently Balasubramaniam and Chai (1987) showed that for MaW1,
the solution of Young et al. is an exact solution of the momentum equation for any Re. Crespo
and JimeÂ nez-FernaÂ ndez (1991) carried out an analysis for the limit of both Rew1 and Maw1,
and found thermal and viscous boundary layers surrounding the bubble, and obtained an ex-
pression for the bubble velocity that di�ered from that of Young et al. for negligible convection
by a numerical factor; similar results were obtained by Balasubramaniam and Subramanian
(1996) using a slightly di�erent approach. In a previous paper, Crespo and JimeÂ nez-FernaÂ ndez
(1992) showed that in the limit of Maw1, there is a thermal boundary layer that can be solved
separately yielding a boundary condition for the momentum equation that has to be solved nu-
merically for arbitrary Re; in the limit of Rew1 the solution mentioned above is recovered, and
for ReW1 an expansion of the velocity ®eld in terms of Gegenbauer functions and Legendre
polynomials was performed, giving again a bubble velocity that di�ered from that of Young et
al. for negligible convection, by a numerical factor. Balasubramaniam and Subramanian (1996)
showed that there was an error in the numerical procedure of Crespo and JimeÂ nez-FernaÂ ndez
(1992), and that this factor was consequently not correct. Szymczyk and Siekmann (1988) per-
formed a numerical analysis retaining convective e�ects; however, the number of results they
obtain under the conditions that will be examined here is rather limited.
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In this work the limit of Rew1 and arbitrary Ma will be examined. It is shown that the vis-
cous boundary layer introduces only a small perturbation on the velocity ®eld, that essentially
corresponds to the irrotational ¯ow around a sphere. Only the corresponding linear equation
for temperature has to be solved. The bubble velocity is obtained from an integral condition,
introduced by Crespo and JimeÂ nez-FernaÂ ndez (1992), that has to be satis®ed in order to avoid a
singularity of the viscous boundary layer velocity at the rear of the bubble. As indicated pre-
viously, the solution is already known analytically in both the limits Ma = 0 and in®nity,
besides, Balasubramaniam and Subramanian (1996), also gave the asymptotic behavior for
Maw1. However, the asymptotic behavior for MaW1 is not known, and here an analysis is pre-
sented examining this limit, that is similar to that performed by Subramanian (1981) for the
limit in which both Ma, ReW1. It is the purpose of this paper to examine the transition from
small to large values of Ma and establish the range of validity of the analytical solutions.
Balasubramaniam (1995) obtained numerical results for some values of Ma, however, he concen-
trated more on the numerical aspects and did not compare with the asymptotic behaviors in the
limiting situations, although he obtained the correct limiting solutions for Ma = 0 and in®nity.
In order to establish this comparison it has been necessary to obtain more numerical results,
particularly in the region of large Ma; in this work, values of Ma as large as 50,000 are reached
(that can be extended to 500,000 if a non-uniform grid is used), whereas Balasubramaniam
(1995) only reached values of 2000.

In this work, as in most of the previously mentioned references, it is assumed that surface ten-
sion e�ects are large enough so that the bubble remains spherical; small deformations are calcu-
lated by Balasubramaniam and Chai (1987), when both Weber (Wb) and Capillary (Ca)
numbers are small, however, this assumption is more di�cult to satisfy in our case, as Rew1
and Wb = Ca�Re. It is also assumed that the bubble does not expand or contract, because the
external temperature variations are small enough to induce small changes in the gas density and,
besides, the heat transfer to the bubble is very small, as a result of the small heat conductivity
of the gas, that in this analysis it is assumed to be negligible compared to that of the liquid.

2. GOVERNING EQUATIONS

The nondimensional conservation equations for the liquid in a reference frame ®xed to a
bubble are:

conservation of mass,

r � v � 0; �1�
conservation of momentum,

v � rv� rp � 1

Re
Dv; �2�

conservation of energy,

1� v � rT � 1

Pe
DT : �3�

Where v , p and T are the non-dimensional velocity, manometric pressure and temperature re-
spectively. Distances have been non-dimensionalized with the bubble radius, R, the velocity with
the bubble velocity, V1, the temperature with 1/R(d T1/dx), dT1 / dx is the gradient of the
temperature at in®nity, and the manometric pressure with r V1

2, where r is the density of the
liquid. The Reynolds and Peclet numbers are respectively Re = rV1R/m and Pe = V1R/k,
where m is the viscosity and k the thermal di�usivity of the liquid. The boundary conditions are:

vy � sin y; vr � ÿ cos y; p � 0; T � r cos y; for r � 1; �4�

vr � 0
@T

@r
� 0;

@vy
@r
ÿ vy

r
� 1

v1

@T

@y
; for r � 1; �5�

where axial symmetry is assumed, spherical polar coordinates have been used, and the
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parameter v1 is (m V1)/(sTR dT1/dx), where sT is minus the derivative of surface tension with
temperature, that is supposed to be positive. v1 represents the non-dimensional bubble velocity,
that has to be calculated. The Marangoni number is then given by Ma = Pe/v1.

For large values of Re, as shown by Crespo and JimeÂ nez-FernaÂ ndez (1991), the velocity ®eld
is given in a ®rst approximation by the irrotational solution:

v0 � rf; where f � ÿ r� 1

2r2

� �
cos y: �6�

This solution in general does not satisfy (only in the limit Pe = Ma = 0) the last boundary con-
dition in [5], and a hydrodynamic boundary layer is required. However, this boundary condition
is on the velocity gradient, not on the velocity itself, and as the boundary layer thickness is
small, only a small perturbation on the velocity is expected. The appropriate boundary layer
variables are de®ned by:

r � 1� y

Re1=2
; vy � vy0 �

u

Re1=2
; vr � v

Re1=2
: �7�

Introducing these variables in [2], using [6] for vy0 , and assuming the pressure to be that of the
irrotational ¯ow, the following equation is obtained for the azimuthal velocity perturbation (see
also Levich (1962)):

3

2
sin y

@u

@y
� 3

2
u cos yÿ 3y cos y

@u

@y
� @

2u

@y2
: �8�

At y=1, u = 0, and the boundary condition [5] is now:

@u

@y
� 3 sin y� 1

v1

@T

@y
; at y � 0; �9�

Besides, it should also be imposed that, for y = 0, u = 0. Crespo and JimeÂ nez-FernaÂ ndez (1991)
introduced a function, U(y), representing the total ¯ux of the perturbed velocity, whose value
can be obtained from integration of equation [8] across the boundary layer:

U �
�1
0

udy � ÿ 2

3 �sin y�3
�y
0

@u

@y

� �
y�0
�sin a�2da: �10�

This solution gives a singularity for y = p, unless the integral vanishes. Imposing this condition
and using the boundary condition [9], the following equation is obtained to calculate the non-
dimensional value of the bubble velocity:

v1 � ÿ 1

4

�p
0

@T

@y

� �
y�0

sin2 y dy: �11�

This result was also obtained by Balasubramaniam and Subramanian (1996) using viscous dissi-
pation arguments. In the limiting situation of Pe = Ma = 0 the solution of the temperature
®eld is T =ÿ f, where f is given in [6], that was substituted in [11] yields the classical result
v1=1

2 of Young et al. (1959), that can also be obtained from [9] with u = 0. In the opposite
limit of Maw1 there is a thermal boundary layer, and Crespo and JimeÂ nez-FernaÂ ndez (1991)
and Balasubramaniam and Subramanian (1996) show that v1=(8±3 log 3)/24 = 0.196.

Here, the solution for Re =1 and arbitrary Pe will be obtained. Assuming that the velocity
®eld is given in ®rst approximation by [6], the temperature ®eld will be obtained from [3] with
v = v0, and boundary conditions on temperature are given in [4] and [5]: @T/@r= 0 at r = 1,
T = r cosy at r =1. When the temperature ®eld is known, the value of v1 is obtained from [11].

3 . SOLUTION FOR SMALL PECLET NUMBERS

The solution for small Ma or Pe is obtained using a matched asymptotic expansion pro-
cedure, applied in a classical way. The procedure is quite similar to that used by Subramanian
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(1981), although in this case it is easier, because only the temperature has to be calculated, as

the velocity ®eld is known. Here, only the ®nal results are given and the details of the calcu-

lation can be found in that reference. The inner variables are r and y, and the outer variables

are r1=r Pe and y. The inner temperature ®eld is given by:

T � t0 � t1 Pe� t2 Pe
2 �O�Pe3�; �12�

where,

t0 � r� 1

2r2

� �
cos y; �13�

t1 � 1

6r
ÿ 1

24r4
� 2

9r3
ÿ 1

3r
ÿ 1

12r

� �
P2�cos y�; �14�

t2 �ÿ 1

6
� ÿ 13

60
� 11

360r2
ÿ 1

120r3
ÿ 1

45r5
� 1

80r6

� �
cos y

� 1

20
ÿ 1

15r2
� 1

20r3
� 1

40r4
ÿ 1

30r5
� 1

120r6

� �
P3�cos y�;

�15�

and Pi is the Legendre polynomial of order i. The terms in the order of 0 and 1 are the same

ones calculated by Subramanian (1981), except there is a factor 2 di�erence in t1 because we are

expanding in terms of the Peclet number instead of the Marangoni number. The outer tempera-

ture ®eld is given by:

T � H0

Pe
�H1 �H2 Pe�H3 Pe

2 �O�Pe3�; �16�

where

H0 � r1 cos�y�; H1 � H2 � 0; �17�
and,

H3 � ÿ cos�y�
2r21
� exp ÿ r1

2

� �
�1� cos�y��

h i 2� r1

2r21
cos�y� � 1

3r1

� �
: �18�

The migration velocity is obtained from [11] and [12],

v1 � 1

2
ÿ 49

720
Pe2 � � � � � 1

2
ÿ 49

2880
Ma2 � � � � ; �19�

where the relationship Ma = Pe/v1 has been used. The correction to the classical solution,

v1=1
2, is O(Pe2). Subramanian (1981), in the limit of small Re, gives for the correction term

(ÿ301/14,400 Ma2), that is larger than the one calculated here. It also appeared in Subramanian

(1981), that a regular expansion procedure will give the correct results for t0 and t1, however,

the constant term in t2 will not be obtained, and the regular expansion would fail because the

condition at in®nity is not satis®ed. Then, the outer solution, given by [16]±[18], is necessary to

match the inner solution as r goes to in®nity. However, the regular expansion without the con-

stant term in [15] is able to give the correct terminal velocity, so that the outer temperature ®eld

is not strictly necessary in this case if one is only interested in the result given by [19]; this is

probably due to the fact that at in®nity T = O(r) is much larger than the constant term. The re-

sidual obtained from substituting [12] into [3] contains terms of O(Pe3/r), so that it is likely that,

if it is attempted to obtain a higher order term in the inner expansion, it will probably diverge

at in®nity like O(r), and the outer expansion will be needed.
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4. NUMERICAL SOLUTION AND COMPARISON WITH OTHER RESULTS

The discretization of [3] has been made using centred di�erences for all the derivatives. The
azimuthal and radial coordinates have been divided in My=90 and Mr=300 elements, respect-
ively. A sensitivity analysis has also been made using a smaller number of elements, and the
results have not changed signi®cantly, except for large Pe, as explained below. The matrix of the
coe�cients, of orderMyMr, is sparse and banded, and has been converted to upper triangular;
therefore, the values of temperature at each node have been calculated using a direct method.

In®nity is located at r = 10, for Pe of the order of one or smaller. For large values of Pe,
there is a thin thermal boundary layer near r = 1, of thickness O(1/Pe1/2), so that the radial el-
ements have to be very small. For this case the outer boundary has been located at a distance:

Rext � 1�N=Pe1=2; �20�
where N has been given di�erent values: 10, 20 30; no signi®cant variation of the results was
observed as N is changed. If Rext>10, the outer boundary is located at r= 10. In general, Rext

is not large enough for condition [4] for the temperature to be satis®ed, and instead, the follow-
ing condition, obtained from the outer solution of [3] without the di�usion term, given by
Balasubramaniam and Subramanian (1996), has been used:

T � Rext cos�y� �
�1
Rext

1

~r3 ÿ 1

3C

~r2 ÿ 1

~r

ÿ 1

0B@
1CA 1

1ÿ 2
C

~r2 ÿ 1
~r

 !1=2
d~r; �21�

where C is the stream function corresponding to the velocity ®eld of [6]: C=1
2sin

2(y)(r2-1/r).
Another problem for large Pe comes up at the rear of the bubble, where there are large values

of the thermal gradient. This large value of @T/@y can be explained considering [3] without the
di�usive term; the equilibrium between the convective and unsteady terms gives @T/@y =ÿ 1/vy
over the bubble surface, so that the temperature gradient becomes singular both at the front
and rear stagnation points; the singularity at the front is cancelled by the thermal boundary
layer of thickness 1/Pe1/2, however, at the back, the boundary layer thickness becomes in®nite,
originating a thermal wake, where the di�usive term in the r direction is very small to cancel the
e�ect of the unsteady term. Balasubramaniam and Subramanian (1996) have treated analytically
this singularity by considering within the thermal wake a very small inner region around y = p
of thickness 1/Pe1/2, where di�usive e�ects in the y direction are important.

For values of Pe>10,000 (Ma>50,000) oscillations of the temperature ®eld of wavelength of
the order of the grid size appear near the wake, that for larger Pe extended to the whole ¯ow
®eld; however, in spite of these oscillations, the values of v1 seem to be correctly predicted,
even if Ma is of the order of 106. A similar problem has been found by Balasubraniam (1995).
Using a non-uniform grid the calculations can be extended up to Ma of the order of 500,000,
without signi®cant oscillations of the temperature, however, in this case the truncation error is
an order of magnitude larger than with the uniform grid.

In ®gure 1 are given the values of v1 as a function of Ma and compared with the asymptotic
expansion for v1 obtained by Balasubramaniam and Subramanian (1996) for large values of
Ma,

v1 � 1

3
ÿ log 3

8

� �
ÿ 0:1369

1

Ma1=2
log

1

Ma1=2

� �
� 0:6578

1

Ma1=2
�22�

and with expression [19], valid for small Ma. Presented also are the numerical results of
Balasubraniam (1995). The values of v1 calculated are very similar to those calculated here,
although slightly smaller for large Ma. Equation [19] is in acceptable agreement with the nu-
merical calculations for Ma < 2, where the maximum relative error is of the order of 10%.
Equation [22] is in acceptable agreement with the numerical results for values of Ma>15 where
the relative error is also of the order of 10%. From the results shown in ®gure 1 it looks as
though with further approximations in [19] and [22] their ranges of agreement with the numeri-
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cal results could be signi®cantly extended. As an example: by adding the term ÿ0.42/Ma to the

r.h.s. of [22], and the term 0.0007 Ma4 to the r.h.s of [19], the di�erence between the numerical

results and the results of [22] and [19] would be less than 7% in their respective ranges:

1> Ma > 4, 4 > Ma > 0; although it should be stressed that the correct calculation of the

next order terms is a very laborious task.

Figure 1. Non-dimensional bubble velocity as function of Marangoni number Ma. Comparison with
numerical calculations of Balasubramaniam (1995), and asymptotic expansions for large and small Ma.

Figure 2. Distribution of temperature gradient, dT/dy, at the bubble surface. Comparison with analyti-
cal expressions for Ma = 0 and Ma =1.
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From the results of Szymczyk and Siekmann (1988) only one value could be obtained for
®nite Pe (Pe = 10, Ma = 31) and large Re (Re = 100), giving v1=0.35, that is in acceptable
agreement with the results shown in ®gure 1, that gives v1=0.32.

In ®gure 2 are given the distributions of the temperature gradient at the surface of the bubble
for di�erent values of Pe. Also are drawn the corresponding distributions for Pe = 0 and 1,
that can be obtained from Crespo and JimeÂ nez-FernaÂ ndez (1990) and Balasubramaniam and
Subramanian (1996), and are given by:

dT

dy
� ÿ 3

2
sin�y�; r � 1; Pe � 0; �23�

dT

dy
� ÿ 1

6

�5� 3 cos�y�� sin�y�
�1� cos�y���2� cos�y�� ; r � 1; Pe � 1: �24�

For Pe of order 1 the distribution is similar to that of Pe = 0, but the minimum is slightly larger
than ÿ 3

2 and displaced to values of y larger than 908. For larger Pe the minimum is displaced
further back to larger values of y, however it gets smaller than ÿ 3

2 and decreases as Ma
increases. For Pe of order 20, the distribution becomes very similar to that of Pe =1, up to
the position of the minimum; for larger Pe, the distributions follow the same trend, giving smal-
ler minima, that are getting closer to y = 1808, where d T/dy = 0, showing clearly how the gra-
dient in the back becomes singular for Pe =1. From the analysis of Balasubramaniam and
Subramanian (1996) it is easy to obtain that the thickness of the region between the minimum
and y = p is pÿ ymin=1.29/Pe0.5=2.92/Ma0.5, that is approximately satis®ed by the results of
®gure 2, even for Pe as low as 20.

5. CONCLUDING REMARKS

An asymptotic analysis for small Ma and a numerical analysis for arbitrary Ma have been
carried out of the ¯ow ®eld around a bubble, whose movement is induced by thermocapillary
forces, in the limit of high Reynolds numbers. The nondimensional bubble velocity and the tem-
perature gradient at the bubble surface, calculated numerically, are presented and compared
with analytical results for both large and small Ma, and with numerical results obtained inde-
pendently by Balasubramaniam (1995). The expansion for large Ma has been proposed by
Balasubramaniam and Subramanian (1996). Di�culties in the numerical integration appear for
Maw1 because the presence of both the thermal boundary layer and the wake. The boundary
layer e�ect is solved by imposing the boundary condition closer to the bubble, and using the
outer non-di�usive solution. The wake imposes a limitation on the maximum value of Ma. The
numerical results show how the large gradients in the back are formed.
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